Thursday 6 July 2006

Fuel system diagram

A few people have asked me to publish a diagram of the fuel system used. Well, here it is. My apologies for the rather rudimentary sketch. I'll try to improve it one of these days.

There are a number of possibilities available for a twin tank conversion such as this, and there is no such thing a the "perfect system". There is always a compromise of some sort. I’ve found that my system works very well. Initially, I was concerned that this particular system would be prone to air intolerance, but as it turned out, it is very good in this respect. In fact there are NO air leaks at all, and even after the car has been left standing for a few days, the system remains perfectly primed.

Initially, this was not the case, and I was going crazy trying to eliminate the air when bleeding the lines. I refitted all the fuel lines and retightened the hose clips, so I was satisfied that the air leak was not from poor attention to the plumbing work. The source of the air leak turned out to be the design of the 3-way return line banjo fitting on top of the stock Mercedes fuel filter. The fitting has a hole through the middle of the screw so that air was entering from the canister. It was easily fixed using some metal epoxy to block the hole. Once that was done, priming using the stock priming pump on the side of the IP was a cinch!

Note that the spill line for the diesel circuit goes back to the diesel tank, whereas the the spill line for the UCO/WVO circuit re-enters the UVO/WVO line just before the heat exchanger. This helps to conserve a small amount of heat.

A separate filter for each fuel system ensures that changeover times are minimised. A one-filter system would require that the entire contents of the filter would need to be emptied before effective changeover occurred.

No electric heaters are employed at this stage. I wanted to avoid placing additional load on the alternator, as a decent electric heater would draw something like 200-300watt.

You will also notice that I have not used a separate fuel pump in the WVO system. I’ve found that the stock lift pump is quite capable of the task.

One disadvantage of my system design is that the vehicle must be started and shut down on diesel fuel. There is always the possibility that the driver could forget to switch over before stopping for extended periods, thus leaving UCO/WVO in the IP and injectors. While I've found that this is not really a problem and re-starting from cold is still possible on WVO, albeit a little more cranking is involved, this is not really ideal because it can cause coking of the combustion chambers.

Overall, I’m quite happy with it. I’ve found that the 300D seems to reach operating temperature quite quickly, and that I am able to switch over to WVO fuel after about 3 minutes. Change overs are not noticeable at all…

Tuesday 4 July 2006

It all comes together... Conversion complete!

The final stage of the veg-oil conversion of the 300D has been completed! This stage was almost all plumbing work. It now runs on

  • Diesel,
  • any new vegetable oil,
  • any used vegetable oil,
  • biodiesel or
  • any combinations of the above!

The veg fuels are filtered to at least 5 micron before filling the tanks and then again by a pre-filter and an on-board water-removing CAV cartridge type filter.

In operation, I start the car on diesel. It takes 3 minutes for the 3litre Mercedes OM617 diesel motor to heat up the coolant suffiently to enable burning of the cooking oil to commence. I flick the on dash fuel selector switch and about 15 seconds later I’m driving along smelling like a mobile Maccas! When I stop and turn off the engine, if I’m not intending to restart within a couple of hours I’ll shut down on diesel to make starting easier. However, it will start OK on the cooking oil, but to avoid any damage to the injectors, a proper shut-down is preferable. I’m thinking of the possibility of using a turbo-timer to automate the shut-down.

Here are the final shots of the installation:


This one shows the brass tee into the heater circuit to take off coolant for the heat exchanger. I’ve discovered that quality brass fittings are expensive! This tee routs the coolant to the 26 plate heat exchanger, from where it returns it to the cooling system via another tee before the thermostat on the other side of the engine. As you can see, I can still access the oil filter quite easily, so servicing is not a problem.



This shot shows the brazed plate heat exchanger (imported from Taiwan via the US) with all plumbing connected. The coolant enters from the top and exits at the bottom of the exchanger. Fuel (waste veg oil or “wvo”) enters at the bottom and exits at the top. This is called a contra-flow setup, and makes the most efficient use of the heat from the coolant. I found that it was not necessary to move the windscreen washer tank or the self-levelling suspension system’s hydraulic oil tank, as all the hoses fitted comfortably around and under the tanks.


From the heat exchanger, the heated WVO then goes through the Delphi CAV filter and from there to the Pollak valve (US made) for distribution to the lift pump on the IP. The Pollak valve is controlled from a switch on the dash.


This shot shows the connection from the lift pump to the injection pump, or IP. The line is transparent to allow me to see if there are any air leaks in the system. Air leaks will immediately be revealed by bubbles appearing in the line. Normally this supply line goes to the stock Mercedes filter before being routed to the IP, but the fuel is now filtered before it enters the lift pump, so this is no longer necessary. The glass pre-filter on the diesel supply line is just to the left of the transparent line. This transparent pre-filter is important as it also helps to detect air in the system. Additionally, it is important as it monitors any algae (“diesel bug”) build-up in the tanks which is a natural occurrence in oil fuels, but of course must be eliminated.


It was convenient to utilise the stock three-way return-line banjo fitting on the stock filter housing to route the overflow lines back to the Pollak valve. However, to eliminate air and facilitate priming this particular set-up required that the venturi hole in the three-way fitting had to be blocked off. I did this using metal epoxy. The rear of the CAV truck-style filter for the WVO fuel circuit is in the foreground. I have been asked why I have the two filters, and not just the one? After all the Delphi does have 4 fuel ports. The simple reason is that fuel changeovers are more rapid this way, as the fuel in the filter does not have to be used up before full changeover occurs.


The WVO tank is in the boot. I have two of them for easy changeovers and handling. Honda bayonet fittings ensure easy, no-mess changing of the tanks. They are restrained by “occie” straps and a bar that slips into a recess under the tank. In due course, I may decide to use these outboard tanks for the diesel fuel and put the WVO in the main tank. At the moment, it has all to do with the ease of fuel handling, and this system allows me to refuel the tanks out of the car. It also allows me to use a brew-heater under the tank overnight in mid-winter to prevent the possibility that cold temperatures could gel the WVO.

Sunday 4 June 2006

Pollak valve wired up and control switch installed...

I didn't get around to the plumbing this w/e but I've installed the wiring for the Pollak valve and the On/On control switch is mounted on the dash. To install the switch, I drilled through one of the switch panel blanks.

I've taken the power for the Pollak from the rear window demister as it operates only on auxiliary.

I encountered a problem with the valve operation. The problem was that I only had +12V to one terminal on the Pollak valve. Flicking the switch resulted in no voltage to the other terminal, so the solenoid did not operate back and forth as it should.

Thanks to Tony in West Oz, the problem was identified. I had omitted to bridge the diagonal terminals on the 2-Position, Double Pole Double Throw, On/On switch :( What a klutz I am!

Saturday 3 June 2006

The fun begins...

I'm doing a twin tank conversion. The existing tank will still be used for diesel. I am using two 25litre marine outboard motor fuel tanks in the boot for the WVO. They are easy to handle as I plan to refuel from a 200litre drum in the garage. The tank connectors are self-sealing Honda bayonet fittings to minimise fuel spillage when swapping tanks.

In cold weather I'll use a flat pad home-brew heater under the tank overnight to keep the fuel warm.

Some pics of the installation so far:-

the Kaori "26-plate" brazed plate heat exchanger installed behind the left front headlight. The headlight cover is still removeable OK, but there is a trick required to install the blinker! I will have to move the self-levelling oil reservoir over about 1cm as it is making contact with one of the brass connectors. The mounting bracket was made from galvanised strapping. It is insulated by some 2mm thick rubber to minimise heat transfer to the body. This 26 plate stainless steel HE is copper-brazed in a vacuum and uses a contra-flow system to transfer heat. They are 10x more efficient than tube-type exchangers. It should have plenty of grunt to heat the WVO to almost the same temp as the coolant. Mounted upright like this achieves maximum efficiency.




The Delphi CAV filter mounted on the shock absorber tower next to the standard filter using heavy gauge galvanised brackets. The vibration of the OM617 engine hardly moves the CAV. It will filter the WVO and has a glass inspection bowl. In this position there is easy access to the drain underneath the glass bowl. The standard OEM filter will continue to handle the diesel fuel. The filter mounting arrangement gives me some flexibility as to the final position of the filter when plumbed.




This shot shows the installed CAV filter, the 6-port Pollak valve on the wheel arch, and the heat exchanger ready to accept the plumbing. I have yet to wire the Pollak valve to the fuel changeover switch on the dash.

_________________

Tuesday 30 May 2006

Why not make Biodiesel instead?

Well, why convert the car to run on waste vegetable oil (WVO)? Why not just make Biodiesel? After all, the 300D runs fantastically well on Biodiesel with no modifications required...

Good questions. It was originally my intention to make a small scale biodiesel production plant to make fuel for my own use. But first, what IS "Biodiesel" and how is it different to veg oil?

Biodiesel is essentially vegetable oil that has had the glycerine and "soap" stripped out from it by a process of transesterification. This process reduces the viscosity of the veg oil to approximately that of dino-diesel. This is why it is not usually necessary to make any modifications to run a diesel engine on biodiesel. It also has excellent lubricity, better in fact than dino-diesel. The only real problem that might arise in some vehicles is that the seals in some injection pumps and the fuel lines might degrade. All veg oils and biodiesel will soften ordinary rubber. To combat this effect, seals, membranes and fuel lines made from nitrile or viton rubbers are usually used.

Now the chemical processes involved in the manufacture of biodiesel are quite simple, and around the world there are many home mini-plants in operation. It is so simple, that you can make it in your kitchen using nothing but a PET softdrink bottle. See: http://en.wikibooks.org/wiki/How_to_make_biodiesel
Please heed the cautions!!!

OK, it's so simple to make biodiesel, why not? Personally, I have two reasons not to tread this path: -

1. Here in Australia, biodiesel is now officially a fuel. Now we all know what governments do with fuel don't we? Yes, they tax them! Excise tax in fact. So to legally make biodiesel for your on consumption, you have to register as a fuel producer. Not only do we have to register and toe the line with reams of paperwork to satisfy the tax man, we also have to jump through hoops in order to comply with local government regulations, State government manufacturing, as well as storage and material handling issues.

As Senator Allison said: "Home-brewers will not produce biodiesel, or if they do, they'll be doing it outside the law [and] they'll be effectively tax cheats," she said.

"One of the reasons they won't continue to produce biodiesel is the cost of licensing and testing which means thousands of dollars in many cases.

"Not only will it not be viable but it would be very, very expensive."

2. The main reagent in the biodiesel making process is a chemical called Sodium Methoxide. It is the product of mixing two chemicals that can be found in many households, ie. methanol (methyl alcohol/methylated spirits)and sodium hydroxide (drain cleaner), yielding a solution of sodium methoxide in methanol. When sodium methoxide is mixed with vegetable oil at the right temperatures, the glycerine and soap components are stripped out, leaving behind.........Biodiesel! OK, what's the problem? Well, a big one as far as I'm concerned......

Sodium methoxide in methanol is a liquid that kills human nerve cells before any pain can be felt…… Yikes!!!!

No such problems with WVO. WVO, also known as UCO (Used Cooking Oil) is classified as a food, so no excise applies :)

Monday 29 May 2006

Converting a 1976 Mercedes Benz 300D to run on WVO


About 2 years ago I purchased a 1976 Mercedes 300D with the intention of one day running it on 100% vegetable oil.

Why?

Well, there are environmental benefits of burning veg oil rather than petro-diesel. Petro-diesel is a fuel that was laid down tens of millions of years ago. Burning it is releasing all the stored CO2 into today's atmosphere at a far greater rate than plants took to make it. Veg oil, whether in Biodiesel form, straight vegetable oil (SVO), waste vegetable oil (WVO) or used cooking oil (UCO) forms, is a renewable resource and its CO2 output fom combustion is theoretically balanced with the plant's intake from the atmosphere. In other words, veg oil is a "green" fuel with a much reduced impact on our atmosphere.

I don't wish to post too much detail on these fuels here on this blog. A quick search using words like: biodiesel, WVO, SVO, bio-fuels will produce plenty of reading matter on the subject. A good, quick reference to biofuels is http://www.nrel.gov/docs/fy00osti/25876.pdf

For those unfamiliar with Benzs, my 300D is a model W123. Technical details are as follows: -

(All technical data reproduced with kind permission of Carfolio.com
Reproduction free under the terms and spirit of the GNU GPL)

Code: OM 617 D 30 / 617.91
Manufacturer: Mercedes-Benz
Type: 5 cylinders SOHC
10 valves total
2 valves per cylinder
Main bearings: 6
Bore x stroke: 91.00mm × 92.40mm
Bore / stroke ratio: 0.98
Displacement: 3005 cc 183.37 cu in
Compression: 21.00:1
Fuel system: Bosch diesel inj.
Aspiration: Normal D.
Catalytic Converter: N
Max. output: 81.1 PS (80.0 bhp) (59.7 kW)@4000 rpm
Max. torque: 171.0 Nm (126 lbft) (17.4 kgm)@2400 rpm
Coolant: Water
Specific output: 26.6 bhp/litre
Specific torque: 56.91 Nm/litre

Performance
Top speed: 148 km/h (Yeah, right, they're dreaming...!)
Power to weight: 55.36 bhp/ton

Chassis
Engine location: Front
Engine alignment: Longitudinal
Steering: recirculating ball PAS
Suspension front: I.W.CS.
Suspension rear: I.STA.CS.
Brakes: Disks front/Disks rear
Transmission: 4 spd Auto
Drive: RWD
Top gear ratio: 1
Final drive ratio: 3.46

Why a 300D Benz?

The W123 model Mercedes Benz is widely considered as the most bullet-proof and reliable Benz models ever made. Around the world, stories of these cars reaching 500,000km are commonplace. A million km on the clock hardly raises an eyebrow. All W123s are a tribute to Mercedes Benz engineering, and their diesel engines in particular, are legendary.

More so than their petrol (gasoline) counterparts, the diesel W123 models hold sway as being even more long-lived. The Bosch in-line injection pump that feeds the 5 cylinders is just as tough. Moreover, unlike most other diesel injection pumps which rely heavily on the diesel fuel itself for lubrication , the Bosch pump is lubricated by sump oil from the engine. Therefore it is not as prone to the effects of low-sulphur fuel as most pumps are these days. It has a reputation as being particularly resistant to the effects of bio-fuels on newer fuel system elastomers, seals, and metals.

Watch my week by week progress on the conversion of this vehicle to use used cooking oil as a fuel!

Cheers
OZTayls